Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins.
نویسندگان
چکیده
Engineered protein scaffolds have received considerable attention as alternatives to antibodies in both basic and applied research, as they can offer superior biophysical properties often associated with a simpler molecular organization. Sac7d has been demonstrated as an effective scaffold for molecular recognition. Here, we used the initial L1 'flat surface' library constructed by randomization of 14 residues, to identify ligands specific for human immunoglobulin G. To challenge the plasticity of the Sac7d protein scaffold, we designed the alternative L2 'flat surface & loops' library whereof only 10 residues are randomized. Representative binders (Affitins) of the two libraries exhibited affinities in the low nanomolar range and were able to recognize different epitopes within human immunoglobulin G. These Affitins were stable up to pH 12 while largely conserving other favorable properties of Sac7d protein, such as high expression yields in Escherichia coli, solubility, thermal stability up to 80.7°C, and acidic stability (pH 0). In agreement with our library designs, mutagenesis study revealed two distinct binding areas, one including loops. Together, our results indicate that the Sac7d scaffold tolerates alternative library designs, which further expands the diversity of Affitins and may provide a general way to create tailored affinity tools for demanding applications.
منابع مشابه
Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins)
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, p...
متن کاملPreparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3)
Objective(s): As T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune regulatory molecule; its blocking or stimulating could alter the pattern of immune response towards a desired condition. Based on the unique features of nanobodies, we aimed to construct an anti-TIM-3 nanobody as an appropriate tool for manipulating immune responses for future therapeutic purposes. Materials and Meth...
متن کاملThe archaeal “7 kDa DNA-binding” proteins: extended characterization of an old gifted family
The "7 kDa DNA-binding" family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins fo...
متن کاملCLONING AND SEQUENCING OF A MITOCHONDRIAL AUTOANTIGEN WITH IMMUNOGLOBULIN G FROM PATIENTS WITH MULTIPLE SCLEROSIS
Multiple Sclerosis (MS) is a chronic neurological disease of the central nervous system (CNS), characterised by a cellular immune response in early stages and demyelination of the CNS later. Although the cause of MS is unknown, there is much evidence that points to MS as an autoimmune disease. To test the hypotheses that an Autoantigen is involved in MS, we screened a ?gt11 human foetal spinal ...
متن کاملDevelopment and characterization of polyclonal antibody against human kappa light chain in rabbit
Polyclonal antibodies against kappa light chain are used to diagnose diseases producing free light chain. The kappa and lambda light chains are products of immunoglobulin synthesis and released into the circulation in minor amounts such as serum, cerebrospinal fluid, urine and synovial fluid in normal condition. The purpose of this study was the production and purification of polyclonal immunog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2013